Zoonotic Tuberculosis at the Human-Livestock-Wildlife Interface

Meghan Gibas
Colorado State University
College of Veterinary Medicine & Biomedical Science
Outline

• Background
• Rationale
 ▫ Systematic Literature Review
 ▫ Preliminary Field Data
• Conclusion/Implications
Tuberculosis in Humans

- TB in humans is primarily caused by *Mycobacterium tuberculosis* (*M. tb*)
- TB is an infectious-contagious disease and represents one of the leading causes of death from an infectious disease worldwide.
 - 8.7 million new cases of TB in 2011
 - 1.4 million deaths in 2011 (WHO Annual TB report, 2011)
 - (3,833 deaths/day)
Mycobacterium bovis (M. bovis)

- The main host of *M. bovis* is cattle

- 128 out of 155 countries reported the presence of *M. bovis* infection and/or clinical disease in their cattle population between 2005 and 2008 (Michel et al, 2010)

- Most warm-blooded vertebrates can be infected, including humans
Transmission & Pathology of *M. bovis* in Humans (Zoonotic TB)

- Orally (unpasteurized dairy products) or through inhalation
 (Michel *et al.*, 2010)

- Patients with extra-pulmonary disease had increased odds of having *M. bovis* vs. *M. tb* (Hlavsa *et al.*, 2008)

- *M. bovis* can be an important etiological agent for extra pulmonary TB, especially in HIV-infected patients. (Cicero *et al.*, 2009)
M. bovis Resistant to PZA

- *M. bovis* is naturally resistant to pyrazinamide (PZA), a critical component to effective short course TB treatment.
 - Thus, patients with undiagnosed *M. bovis* are being treated sub-optimally.
Challenges of Zoonotic TB

- Conditions in the developing world: (Cosivi et al., 1998; Thoen et al., 2006).
 - Higher prevalence of bovine TB in livestock
 - Lack of milk pasteurization
 - Human immunodeficiency virus (HIV)
 - Close interaction between humans, livestock, and wildlife species
Challenges of Zoonotic TB

- **1.4%** is the generally perceived estimate for the proportion of human TB cases infected with *M. bovis*.
 - Lack of targeted surveillance

- Scientific evidence indicates that the true risk of human TB caused by *M. bovis* is under investigated/under estimated/under reported.

Research questions

1) What is the range of risk estimates of *M. bovis* infection (zoonotic TB) among humans diagnosed with TB?

- The **risk** of zoonotic TB was defined as the proportion of human TB patients infected with *M. bovis*.

2) What are the key study design characteristics that may contribute to the heterogeneity between different studies when estimating the risk of zoonotic TB?
Key Study Characteristics

- Inclusion/Exclusion Conditions
 - Culture Positive
 - Skin test Positive
 - Urban vs. Rural
 - Child vs. Adult

- Demographic Characteristics
 - Culture Media Used
 - Molecular Techniques

- Diagnostic & Differentiation Protocols
 - Extra-pulmonary Sources
 - Pulmonary Sources

- Samples Collected
Range of risk estimates of *M. bovis* infection

- There is a large variation (a range of 0-45%) in the risk estimates of *M. bovis* infection in human TB patients.
- 16 of the studies (26%) reported a >10% risk of *M. bovis*.
Results

Distribution of key study characteristics

- **53%** of studies used culture positive TB patients as patient inclusion criteria.
- **32%** of the studies evaluated extra-pulmonary samples.
- **48%** of the studies used Stonebrink as a culture medium for the growth of *Mycobacterium tuberculosis complex* species.
- **8%** evaluated the risk of zoonotic TB specifically in children specifically in children.
- **11%** evaluated the risk of zoonotic TB among TB patients from rural areas.
Preliminary Field Data - Zambia

• Recent retrospective study analyzed sputum samples from 917 patients assumed to be infected with *M. tb*
 • 8 patients with *M. bovis*, all of whom were cattle farmers.

• Currently have ongoing study looking at the rural Namwala district of Zambia
 • Sample includes 45 human patients diagnosed with TB
 • 15 (33%) have been initially classified as infected with *M. bovis* based on culture morphology (cultured on Stonebrink medium)
 • 13 of these patients indicated that they consume raw milk
 • Currently, strain typing is pending to confirm *M. bovis*
One Health Collaboration - Kenya

- Collaborating with physicians in Kenya that noticed monoresistance to pyrazinamide (PZA) among TB patients in rural areas.
 - 2012: 6% of *M. tb* complex isolates were monoresistant to PZA

- Role of socio-cultural practices & the true risk of *M. bovis* infection in these rural communities of Kenya.

Dr. Meghan McInerney (M.D. DTM&H)
Fellow, Pulmonary and Critical Care Medicine
Indiana University

Dr. Jane Carter (MD)
Associate Professor of Medicine
The Union President

MD, Division Global Public Health, University of California, San Diego
Coordinating Committee of Scientific Activities (CCSA)
Conclusions

- There is considerable variation in the risk estimates reported for *M. bovis* infection among human TB patients (range 0-45%).

- Key study characteristics differ considerably, which can have an effect on the risk estimates reported by different studies.
 - Rural communities are underrepresented in the current literature.
 - A considerable amount (>50%) of studies did not use the recommended culture medium to grow *M. bovis*, nor were extra-pulmonary samples evaluated.
Implications

• Epidemiology, pathology, and treatment challenges associated with *M. bovis* infection among humans are significant.

• Studies are needed to assess the risk of zoonotic TB among populations in regions where socio-cultural and economic factors increase the risk posed by this zoonosis.
 - Patient enrollment, sampling procedures, and laboratory protocols need to be carefully considered.
Acknowledgements

- Dr. Francisco Olea-Popelka
Questions?

“Looks like it's back to the horse burgers.”

http://www.shelbourn.com/gazette/gazette-2013.05.09g.jpg

http://img.metro.co.uk/i/pix/2011/09/00/article-126366866678-0DCB345A00000578-16043_4f909.jpg
References